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Abtnet .  In the case of a massless spinor field in 4~ spacetime it is proved that both Fermi 
and Bose quantizations can be carried out. The Bose quantization of this field is demon- 
strated. 

The aim of the present paper is to revise some aspects connected with the theory of 
a free massless spinor field and its quantization. As is well known, the massless Dirac 
equation is a combination of two Weyl ecluations, each of which is invariant under 
the proper Lorentz group. However, this combination is not unique. In fact, the two 
Weyl equations may be combined in a different way in which we obtain that the 
massless Dirac equation is equivalent to the Cauchy-Riemann-Fueter condition for 
the so-called Fueter quatemionic analyticity. The last form of this equation yields the 
possibiiity of seeing some interesting properties oi the iatter, the most singiticant of 
which is the double character of the fields obeying the massless spinor theory. 

In the present paper it will be proved that the spinor field may be considered in 
an alternative manner which allows its quantization with the help of Bose commutation 
relations. As is well known (Bogolubov and Schirkov 1973, Bogolubov et al 1975, 
Itzykson and Zuber 1980), in the usual approach the requirements of locality and 
energy positivity for ihe free spinor iieid iead io ihe Fermi quaniizaiion. in conirasi, 
the Bose quantization does not fulfil these requirements. In this paper the opinion is 
that the more important of the latter is the energy positivity, because it depends on 
the type of commutation relations but not on the commutation functions. 

We start with the action of the free quantum spinor field which we shall write in 
the form 

Here, as usual, we have denoted with the following operation: 

(2) 

Ws assume !hzt !he kind of commutation relations which are obeyed by spinor field 
$I(%), is not specified. To define the normal product signified in (1) with : . , . : it is 
sufficient to assume that the fields #(x), &x) commute or anti-commute with each 
other under the sign : . . . :. 

- 
ud,v=uJ,v-J,Uv. 
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When the y-matrices are in a diagonal y'-representation, instead of relation ( I )  
we have 

where uk are the Pauli matrices. To obtain the last equation we have given the field 
@(x) as follows: 

where p(x)  and x(x)  are two-component spinor fields which are transformed under 
the two non-equivalent spinor representation of the Lorentz group (Weyl representa- 
tions). The asterisks denote Hermitian conjugation. Then we change the form of the 
secon term on the right-hand side of equation (3) in the following way: 

: x * ( x ) ( Z 0 - ~ ~ Z ~ ) x ( x ) :  d4x = n  :X(X)E(Z~+V~Z~)EX*(X) :  d4x. ( 5 )  I I 
Here n takes two values: +1 if we have assumed that x(x)  and xrx) commute and -1 
if we have assumed that they anti-commute. The matrix E has the usual form 

with the property 

U: = & U k E  

which is used to obtain the right-hand side of equation (5). After we take the latter 
into account we can obtain a new expression for action A 

+(x) and &x) are the 2 x 2  matrix-valued fields which are expressed through the 
two-component fields pp,(x), x.(x) (a = 1,2) and their conjugation. In particular, one 
possible expression for these fields is the following: 

In general these expressions are not defined uniquely because of the existence of 
a special gauge, with respect to which action (6) is invariant. This gauge has the 
following form: 

+Yx) = +(x)A and 4'(x) =A-lJ(x) (8) 

where A is an arbitrary non-degenerated constant complex matrix. Because of this 
invariance, the only statement we can make is that the fields +(x) and +(x) in general 
are not conjugateto each other. However, in the case when x = -1 there exists a gauge 
frame in which +(x) coincides with +*(x) (i.e. the Hermitian conjugation). In the 
case when x = 1 (i.e. the fields commute under the normal product sign) the analogous 
frame does not exist at all. Indeed, the reality condition for action (6) in particular 
leads to the following relation: 

+*b) = s&x) (9) 
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where s is an arbitrary but fixed 2 x 2 matrix which must be Hermitian. In case (7) 
this is U,, (the unit matrix) if x = -1  and u3 (the third Pauli matrix) if x = 1. 

In general, the gauge transformations change s as follows: 

s’= A*sA (10) 

where s‘ is the same matrix in the new gauge. From equation (10) we can see that 
there exist two general ways for defining the field G(x) which do  not mix. Each of 
them is formed of matrices belonging to two different orbits of transformation (10) 
(i.e. of the group GL(2, C ) ) .  The first is that which contains the unit matrix and the 
second is that which contains u3. It is easy to prove that these two matrices create, 
with the help of transformation ( lo) ,  two non-intercepted orbits-a ’time-like’ one and 
a ‘space-like’ one respectively. Furthermore, this gauge does not allow unique definition 
of the Lorentz structure of the fields considered. There exist three different ways to 
define the Lorentz transformations of the fields +(x) and $(x) that leave the action 
(6) invariant: 

+(I)+ S ( g ) + ( u W ) )  &x) + &x.A;(g))s*(g) 

+(x) - S(g)+(x.A;(g))S-’(g) 

+(XI + S(g)+(xJ;(g))S*(g) + S*-’(g)$(x,A:(g))S*(g) (11) 

&x)  + s(g)&xJ;(g))s*(g) 

where S(g) belongs to the fundamental representation ( f , O )  ofSL(2, C) (S*(g) belongs 
to the representation (0, f )  of the same group and AL(g) belongs to the four-component 
vector representation of the Lorentz group (g E SL(2, c) respectively). 

Only the first of these transformations defines +(x) and &x) as spinor fields. The 
others define them as a vector field or a field belonging to a reducible representation 
which consists of a scalar and a self-dual antisymmetric tensor field. Therefore, in both 
these cases the fields +(x) and +(x), describing a massless spinor particle, belong to 
‘very’ different representations of the Lorentz group, wbkh is here considered to be 
most unexpected. Recall that in the usual case 4(x)  and +(x) also belong to different 
representations but they are conjugate to each other. 

The non-uniqueness pointed out in the definition and description of the massless 
Dirac field leads to several non-standard results in this theory. The mnst important is 
the possibility of quantizing this field with the help of Bose commutation relations. 
This statement is proved in the following paragraphs. 

First, we must obtain a suitable solution of the equations of motion following from 
action (6): 

( a o + % & ) w )  = o  (12) 

&x)(5,+ &) = 0 ( u 5 - J ~ ) .  (13) 
Remark. Let us consider the first of these equations. This equation in the Euclidean 
formulation (i.e. when X,= iX,) coincides with the so-called Fueter analyticity condi- 
tions (Fueter 1935, 1936, Sudbery 1979) for the quaternionic functions +(x). Here we 
are dealing with a formal analogy of the free Maxwell equations which also coincide 
with these conditions (Weingarten 1973). The connections between the solutions of 
the free Maxwell equations and those of the free massless Dirac equations manifested 
in the paper by Fushchich et al (1991) are a simple consequence of the fact that these 
two equations coincide with each other in the quaterionic form. In a sense the results 
of the present paper extend this formal connection between the two fundamental fields. 
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In the momentum representation each of equations (12) and (13) has four linear. 
independent solutions which form a complete set of orthonormal eigenvectors of the 
energy. We shall denote these vectors as u'(p) ,  o*(p)  for the first equation 

~ f I P I - ~ k P k ~ ~ * ~ P ~ = ~ f l P l + ~ k P k ~ u * ~ P ~ = o  (14) 

and as t i * (p) ,  I5*(p) for the second equation 

t i ' ( P ) ( * l P l - ~ k P k )  = I5*(P)(fIPl+~kPk) =o. (15) 
In the case under consideration ti and 6 may not be conjugate to U and U respectively, 

reflecting the orthonormality condition of these vectors. As is well known, the latter 
must be covariant under the action of the corresponding representation of the Poincark 
group. Here the scalar product corresponding to the definition of action (6) has the 
following form: 

( a , b ) = T r &  (16) 

for any two 2 x 2 matrix-valued vectors of the type ofthe eigenvectors U and o mentioned 
above. This scalar product does not distinguish the three different transformations (11) 
because of its invariance with respect to transformations (8). That is why the subsequent 
results about orthonormality properties of the eigenvectors are valid in all three cases. 

Because of the fact that in our case for each eigenvalue of the energy po=fIpI we 
have two linearly independent eigenvectors, U'( p )  and u' (p)  respectively, we assume 
that 

( U A ( P ) ,  o E ( P ) ) = ( u A ( P ) ,  u " ( p ) ) = O  A, B =  f .  (17) 

The quantities 

( U " ( P ) ,  U % ) )  (18) 

and analogously 

( U " ( P ) ,  0%)) (19) 

(as well as the quantities in equation (17)) change under the action oftransformations 
(11) as second-rank tensors with respect to the maximal compact subgroup O(2) of 
the Wigner group E(2) of the Poincark group (Fushchich and Nikitin 1987). We use 
the quantities (18) and (19) to define the normalization condition which must be 
invariant under the action of transformations (11) (see the appendix). To reach this 
object we must identify tensors (18) and (19) with the invariant ones of the group 
O(2). By analogy with the massive case we can choose as such a tensor the unit one 
SAB. However, the group O(2)  is Abelian and SA, is not the only invariant tensor. The 
generator ( u , ) ~ ~  has the same property, which means that we can normalize our 
eigenvectors in two different ways-with either the help of SA, or (uJAU. The first 
possibility is used in the Fermi quantization of the Dirac field when G and I5 coincide 
with U* and U* respectively. In our  case, when the latter is not fulfilled, we must use 
the second possibility: 

( u " ( P ) ,  u * ( P ) )  Tr[ti4(p) u'(P)I  AB (20) 

and analogously 

( o A ( p ) ,  u e ( p ) )  E Tr[CA(p) .V'(P)I  =  AB 
((m3)++ = - ( r 3 ) - - =  1 (os)+- = ( C A +  = 0). 
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To construct the concrete form of these orthonormal eigenvectors we can use the 
unitary matrix U(p)  defined by the following equality: 

Then we have 

u"(p)=f  U(Fp)u , ( I -uJ= U(TP)U, 'PIFU& 
2lPl 

The momentum P, has the form 

Tr:$(x)z++(x): d3xr 

Then we must substitute +(x) and $(x) in equation (28) with their expressions from 
equations (24) and ( 2 5 ) .  

After simple but very long calculations we obtain the following form for the 
momentum operators: 

P,= P; : [b l (p )b , (p )+a , (~ )a ' (~ ) l :  d'p. (29) l 
We see that the sign of the second term on the right-hand side of equation (25) is 

opposite to that in the usual case and shows us that we must quantize with the help 
of Bose commutation relations instead of Fermi ones. From the Hamiltonian equations 

iJo4(x) = [PO, +(x)l- 
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we define the following commutation relations between the operators a L ( p ) ,  a ; ( p ) ,  
bL(p ) ,  b i b ) :  

all other commutators vanish. The same commutators can also be obtained in the 
canonical approach. Then we can calculate the commutation relations for the fields 
+ ( x )  and 6 ( y ) .  As a result, we find that 

[A&), & s ( ~ ) l ~ =  ( J , - U , ~ * ) ~ ~ D , ( X - Y ) S ~ ,  (31 )  

where the function DO(z)  is the Pauli-Jordan function for the massless scalar field: 

Do( z )  = - 1 e ( p o ) S ( p 2 )  elpz d4p. vPs 
All other commutators are equal to zero. Equality (31) is a proof for the locality of 
the Bose fields +(x) and & ( x ) .  

Using the thus constructed Bose-quantized theory for the spinor field we can also 
calculate some other quantities. First, this may be the operator of the particle charge. 
It reads 

p = \  Tr:&x)+(x):d 'x 

= [ [ a 2 ( p ) a ; ( p )  - b ' (p )b i (p ) l  d'p. (33) 
J 

Another quantity is the two-point function (Ol&p(x)+vs(y) lO) .  To calculate the 
latter we choose the operators a;( p )  and b p ( p )  as anninilation operators. Then we have 

( O l $ a p ( X ) ,  '&(J')IO) = (a , -ukak) ,D,(x-y)S, ,  (34) 

where the function D;(z) is the negative frequency part of the Pauli-Jordan function 
N z ) :  

Finally, the spin operator will be considered in the present case. As is well known, 
the spin operator of the spinor field is not a time-independent quantity. However, in 
the case of a massless spinor field the preserving quantity is the helicity 

k 
Pk A=-S 
PO 

where S, are the spin parts of the first three generators of the Lorentz group which 
correspond to the rotation subgroup. 

The helicity has a meaning only with the momentum-defined states. That is why 
the operators Sk must be chosen in the following form: 

Sk = - $ T r : & ( x ) g k & ( x ) :  (37) 

where &(x) and + , (x )  are the momentum-defined solutions of equations (12) and 
1 1 % )  fa"...moo:-"" :.. .La :..+-"--..A- :" nn.,.ltic."r lid) -n,i (7<\1 
{'J, {'"p"b"'"'." .U ,,LS ,,1,C6,'l,."' 1.. Ly"Y%.".." ,a-, Y . L Y  \e-,,. 
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Remark Because of the existence of three different Lorentz transformations (1  I )  which 
leave the present theory invariant, three different helicity operators can be defined for 
the fields. Here the helicity corresponding to the first transformation only will be 
analysed. The two others can be easily obtained if it is noted that the operators Sk in 
the second and third cases of equation (11) have the form 

S , = - t T r : ~ p ( x ) [ u k , + p ( x ) ] _ : .  

The formal coincidence of these operators follows from the identity between rotation 
subgroup structure of the transformations considered (although they belong to different 
Lorentz representations). 

It can be seen from equation (36) that in the light-cone frame (i.e. p, = pz = 0) the 
expression for the helicity takes the simplest form: 

A = & .  

With the help of equation (37) A can be obtained in the following form: 

A =f([b:(-pdb;(-P,) + ~:(-P,)~;(-P,)IS(-P,) 

- [ ~ ( P & ; ( P ~ ) +  ~:(P~)~;(P,)]@(P,)  
S ( p )  being the step function. 

I t  can be seen that the term proportional to @(-p) has helicity -f and the term 
with B(p)-helicity +$. 

The quantization of the spinor field as a Bose field gives the opportunity of looking 
at the neutrino from another viewpoint. First, let us note that for this type of quantization 
the most important requirement is that the neutrino is massless. This means that the 
type of statistics satisfied by the neutrino leads to definite conclusions about its mass. 
Moreover, with the Bose neutrino field it is possible to write new interaction terms in 
the Lagrangian as 

$?+*I. G + * R  +r&, . . , 
and so on, where +L and $R are respectively the left- and right-handed components 
of any massive spinor field (e.g. the electron field). It may be assumed that such 
interactions must be weaker than the weak interaction and that the manifestation of 
neutrino as a Bose or a Fermi particle depends on the character of the interactions. 
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Appendix 

The action of the first transfprmation (11) on the fields +(x) and &(x) from equation 
(11) on the fields 4(x )  and +(XI from equations (24) and ( 2 5 )  changes the eigenvectors 
as follows: 
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where p' = A;(g-')p'', p 2  = 0 and a(g, p )  is a phase depending on the group element 
g and on the momentum p' which is a concrete form of no importance. The equalities 
in the expressions (A.l)  and (A.2) can be obtained with the help of direct calculations, 
using definitions (23) and (24) of the vectors U* and G*. 

From equations (A . l )  and (A.2) the invariance of the normalization condition (20) 
becomes obvious. 
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